the closed point (0, −1). The curve starts again at the open point (0, −2), goes up and right to the open point (2, 2). There is a closed point at (2, 1). The curve starts again at the open point (2, 0), goes up and right, passes through the point (4, 3), and exits the window in the first quadrant. (a)

  
Use the graph of g to find the value of each expression. (If an answer does not exist, enter DNE.)
The x y coordinate plane is given. The curve enters the window in the second quadrant, goes down and right to the closed point (0, −1). The curve starts again at the open point (0, −2), goes up and right to the open point (2, 2). There is a closed point at (2, 1). The curve starts again at the open point (2, 0), goes up and right, passes through the point (4, 3), and exits the window in the first quadrant.
(a)
lim x → 0 g(x)
 
(b)
lim x → 0+ g(x)
 
(c)
lim x → 0 g(x)
 
(d)
lim x → 2 g(x)
 
(e)
lim x → 2+ g(x)
 
(f)
lim x → 2 g(x)
 
(g)
g(2)
 
(h)
lim x → 4 g(x)